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L3 2024-2025

TD 7 : Formes quadratiques

Les exercices marqués d’un seront corrigés en TD, si le temps le permet.

Sauf mention du contraire, K un corps de caractéristique différente de 2, et tous les espaces
vectoriels considérés sont des K-espaces vectoriels.

Exercices importants

Exercice 1. (Réduction de Gauss)
1. Décomposer suivant l’algorithme de Gauss, les formes quadratiques suivantes sur K :

(a) q1(x, y, z) = (x + y)2 − z2 ;
(b) q2(x, y, z) = xy + xz + yz ;
(c) q3(x, y, z, t) = x2 + y2 + 2(z2 + t2) + xt + xz + zt.

2. Pour chacune d’elles, préciser son rang, son noyau, son discriminant et la signature lorsque
K = R.

Exercice 2.
Soit ϕ l’application définie par

ϕ :
∣∣∣∣∣ M2(K) × M2(K) −→ K

(A, B) 7−→ det(A + B) − det(A − B) .

1. Montrer que ϕ est une forme bilinéaire symétrique. Quelle est la forme quadratique asso-
ciée à ϕ ?

2. Calculer la matrice de ϕ dans la base (E1,1, E1,2, E2,1, E2,2).
3. Soit F = {A ∈ M2(K), Tr(A) = 0}. Calculer F ⊥.

Exercice 3.
1. On ne suppose pas que car(K) ̸= 2. Donner un exemple de forme bilinéaire antisymétrique

mais non alternée.
2. Donner deux formes quadratiques qui ont même rang, même discriminant mais qui ne

sont pas isomorphes.
3. Déterminer la forme polaire de la forme quadratique q : C3 −→ C définie par :

q(x) = 3x2
1 − (1 + i)x2

2 + x1x3.

Écrire la matrice de q dans la base canonique de C3.
4. On définit sur l’ensemble R2[x] des polynômes de degré plus petit que 2 la forme suivante :

q(P ) =
∫ 1

0
P (x)P ′′(x)dx.

Montrer que c’est une forme quadratique. Déterminer son rang, son noyau et les vecteurs
isotropes.
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Exercice 4.
1. Montrer que l’application

q :
∣∣∣∣∣ Mn(K) −→ K

M 7−→ Tr(M2)
est une forme quadratique non dégénérée.

2. Montrer que Sn(K)⊥ = An(K) et que An(K)⊥ = Sn(K).

Exercice 5.
Soit E un K-espace vectoriel de dimension finie, F un sous-espace vectoriel de E, et q une

forme quadratique sur E. On note C(q) le cône isotrope de q.
1. Montrer que si C(q) ∩ F = {0}, alors la restriction q|F de q à F est non dégénérée.
2. Montrer que q|F est non dégénérée si et seulement si F ∩ F ⊥ = {0}. Dans ce cas, a-t-on

F ⊕ F ⊥ = E ?
3. Donner un exemple de forme quadratique q dégénérée telle que q|F est non dégénérée.

Exercice 6. (Cône isotrope)
Soit E un K-espace vectoriel de dimension finie et q une forme quadratique sur E. Soit C(q)

le cône isotrope de q.
1. Montrer que C(q) est stable par multiplication scalaire.
2. Montrer que C(q) n’est pas toujours stable par addition.
3. Montrer que si C(q) = ker(q), alors la forme quadratique q : E/ ker(q) → K est aniso-

trope.

Exercice 7.
Soient E = K2, et q une forme quadratique sur E. On note C(q) son cône isotrope.

1. Montrer que l’une des propositions suivantes est vraie.
(i) C(q) = {0}.

(ii) C(q) est une droite.
(iii) C(q) est réunion de deux droites distinctes.
(iv) C(q) = K2.

2. Pour chacune des situations (ii), (iii), (iv), montrer que pour tout corps K de caractéris-
tique différente de 2, il existe une forme quadratique q sur K2 vérifiant cette situation en
donnant un exemple.

3. (a) Donner un exemple de corps K et de forme quadratique q sur K2 où la situation (i)
est vérifiée.

(b) Donner un exemple de corps K tel que la situation (i) n’est vérifiée pour aucune
forme quadratique q sur K2.

Exercice 8.
Soit (E, q) un espace quadratique. Soit F un sous-espace vectoriel de E. On note ϕ la forme

polaire de q.
1. En considérant le noyau et l’image de (Lϕ)|F : F → E∗ démontrer que :

dim(F ) + dim(F ⊥) = dim(E) + dim(ker(q) ∩ F ).

2. Montrer que F ⊥⊥ = F + ker(q).
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Exercices supplémentaires

Exercice 9.
Soit E un espace vectoriel de dimension 3 et Q(E) l’ensemble des formes quadratiques sur

E. Soient x1, . . . , x5 ∈ E. Montrer qu’il existe q ∈ Q(E) \ {0} telle que

q(x1) = · · · = q(x5) = 0.

(Indication : on pourra commencer par déterminer la dimension de Q(E)).

Exercice 10. (Adjoint et groupe orthogonal)
Soit (E, q) un espace quadratique. On note O(q) ⊂ GL(E) le groupe des automorphismes

u tels que q ◦ u = q.
1. On suppose que q est non dégénérée. Montrer que O(q) = {u ∈ GL(E), u∗ = u−1}.
2. Soit e une base de E et M la matrice de q dans cette base.

(a) Montrer l’isomorphisme O(q) ∼= {P ∈ GLn(K), tPMP = M}.
(b) On suppose q non dégénérée. Soit u ∈ End(E). On note P la matrice de u dans la

base e. Montrer que la matrice de u∗ est égale à M−1tPM .
3. Soit π : O(q) → GL(ker(q)) l’application linéaire définie par π(u) = u| ker(q). Montrer que

π est surjective.

Exercice 11. (Sous-espaces totalement isotropes)
Soit q une forme quadratique de rang r sur un espace vectoriel E de dimension n. On note

ϕ la forme polaire de q.
On appelle sous-espace totalement isotrope (ou SETI ) un sous-espace F de E tel que pour

tout x ∈ F , q(x) = 0. On appelle sous-espace totalement isotrope maximal (ou SETIM ) un
SETI F maximal pour l’inclusion.

1. Montrer que F est un SETI si et seulement si ϕF ×F est nulle.
2. Donner un exemple de forme quadratique non nulle dans K3 admettant un sous-espace

isotrope de dimension 2 non trivial (i.e. différent du noyau).
3. Soit F un SETI de (E, q). Montrer que F est inclus dans un SETIM.
4. Démontrer que dim(F ) ⩽ n − r/2. (On pourra utiliser l’exercice 8)
5. On suppose maintenant que q est non dégénérée. Soient F1 et F2 deux SETIM. On pose

F = F1 ∩ F2 et S1, S2 des supplémentaires respectifs de F dans F1 et F2.
(a) Montrer que S1 ∩ S⊥

2 ⊂ F ⊥
2 .

(b) En déduire en utilisant la maximalité de F2 que S1 ∩ S⊥
2 ⊂ F2.

(c) En déduire que S1 ∩ S⊥
2 = {0}.

(d) Montrer que tous les SETIM ont la même dimension.
6. On ne suppose plus que q est non dégénérée. On note q : E/ ker(q) → K la forme

quadratique non dégénérée associée à q.
(a) Montrer que les SETI de q qui contiennent ker(q) sont en correspondance avec les

SETIM de q.
(b) En déduire que tous les SETIM de q ont la même dimension.
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